Corrigé proposé par :

M. Afekir - École Royale de l'Air

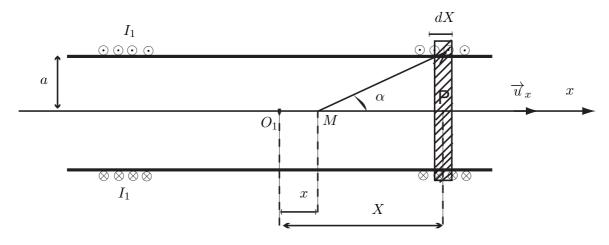
CPGE Marrakech

cpgeafek@yahoo.fr

Résonance magnétique nucléaire - RMN -

Première partie Champ magnétique tournant

- ${f 1.1.}$ Solénoïde (S_1) , infiniment long, comportant n spires circulaires, jointives, par unité de longueur.
- 1.1.1. Solénoïde (S_1) = superposition de n spires circulaires jointives par unité de longueur, on utilisera donc l'expression du champ crée par une spire sur son axe. OM = x. Par superposition, le champ $\overrightarrow{B}(M)$ crée en un point M de l'axe O_1x est la somme vectorielle des champs produits par chacune des spires (de rayons a) parcourues par le même courant I_1 .



Le champ magnétique crée par une spire en tout point M de son axe : $\vec{b}(M) = \frac{\mu_o I_1}{2a} \sin^3 \alpha \vec{u}_x$ Le champ magnétique élémentaire crée par une tranche d'épaisseur dX vaut , en M :

$$d\overrightarrow{B}(M) = \frac{\mu_o I_1}{2a} dn \sin^3 \alpha \vec{u}_x$$

dn désigne le nombre de spires contenues dans la tranche dX:

$$dn = n dX$$
 avec $X = x + a \cot \alpha \implies dn = -na \frac{d\alpha}{\sin^2 \alpha}$

Donc :
$$\overrightarrow{B}(M) = -\frac{\mu_o I_1}{2} n \int_0^{\pi} \sin \alpha \, d\alpha \, \vec{u}_x \quad \Rightarrow \quad \left[\overrightarrow{B}(M) = \mu_o n I_1 \, \vec{u}_x \right]$$

1.1.2. Symétrie

Tout plan contenant Ox est un plan d'antisymétrie pour la distribution du courant, le pseudo-vecteur \overrightarrow{B} appartient à un plan d'antisymétrie. \overrightarrow{B} , en tout point M de Ox, est donc porté par Ox.

$$\overrightarrow{B}(M) = B(M)\overrightarrow{u}_x$$

1.1.3. Invariance (coordonnées cylindriques)

 \diamond On a invariance de la distribution par rotation autour de Ox . donc $\overrightarrow{B}(M)$ est indépendant de θ :

$$\overrightarrow{B}(M) = \overrightarrow{B}(r, \theta, x) = \overrightarrow{B}(r, x)$$

 \diamond On a invariance de la distribution le long de l'axe Ox . donc $\overrightarrow{B}(M)$ est indépendant de x :

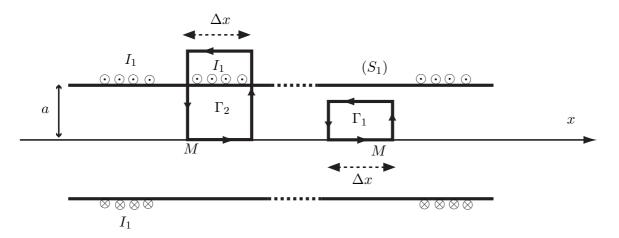
$$\overrightarrow{B}(M) = \overrightarrow{B}(r, x) = \overrightarrow{B}(r)$$

D'où : le champ magnétique $\overrightarrow{B}(M)$ en un point M de l'axe Ox du solénoïde ne dépend que de la coordonnée radiales du système de coordonnées cylindriques.

$$\overrightarrow{B}(M) = B(r)\overrightarrow{u}_x$$

1.1.4. Théorème d'Ampère

- \diamond Symétrie et invariance : $\overrightarrow{B}(M) = B(r) \vec{u}_x$
- $\diamond \ \underline{Choix\ du\ contour}$: On choisit un contour rectangulaire(d'un coté r=0 où $\overrightarrow{B}(M)$ connu, et l'autre à une distance r où $\overrightarrow{B}(M)$ est à déterminer).



Théorème d'Ampère : Soit $M \in \Gamma_i$ tel que $B_1(M) = \mu_o n I_1$

$$\mathsf{D'où}: \oint_{(\Gamma_i)} \overrightarrow{B}(M).d\overrightarrow{l} \ = \ \mu_o I_{enlacee\ par\ le\ contour\ (\Gamma_i)}$$

$$\begin{cases} r < a : \oint_{(\Gamma_1)} \overrightarrow{B}(M) = B_1 \Delta x - B_{\text{int}} \Delta x = \mu_o I_{enlacees} = 0 \Rightarrow B_{\text{int}} = B_1 \\ r > a : \oint_{(\Gamma_2)} \overrightarrow{B}(M) = B_1 \Delta x - B_{\text{ext}} \Delta x = \mu_o I_{enlacees} = \mu_o n I_1 \Rightarrow B_{\text{ext}} = 0 \end{cases}$$

1.1.5. Coefficient d'inductance propre de (S_1) Le champ magnétique $\overrightarrow{B}_1(M)$ est uniforme à l'intérieur du solénoïde (S_1) . Le flux de ce champ à travers la section (S) de (S_1) :

$$\Phi_1 = \overrightarrow{B}_1 \cdot \overrightarrow{S} = \mu_o n I_1 \pi a^2 = \Lambda I_1 \implies \boxed{\Lambda = \mu_o n \pi a^2}$$

1.2. Solénoïdes croisés

1.2.1.
$$i_1(t) = I_1\sqrt{2}\cos(\omega t - \frac{\pi}{4} + \varphi_1)$$

$$\Rightarrow I_1 = \frac{U}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}} \quad \text{et} \quad \tan(-\varphi_1) = \frac{L\omega - \frac{1}{C\omega}}{R}$$

1.2.2.
$$i_2(t) = I_2\sqrt{2}\cos(\omega t - \frac{\pi}{4} + \varphi_2)$$

$$\left(L\omega - \frac{1}{C\omega}\right) = -L\omega$$
 ou $2LC\omega^2 = 1$

$$\Rightarrow$$
 $\tan(\varphi_2)\tan(\varphi_1) = -1$ ou $L^2\omega^2 - \frac{L}{C} = -R^2$

$$L\omega = R$$
 soit: $I_2 = \frac{L\omega}{R}I_1 = I_1 = \frac{U}{R\sqrt{2}}$

Dans le cadre de l'ARQP (Approximation des Régimes Quasi-Permanents : le courant déplacement est négligeable devant le courant de conduction), les équations de Maxwell-Flux et Maxwell-Ampère s'écrivent :

$$\overrightarrow{rot}\overrightarrow{B} = \mu_o \overrightarrow{j} \ (MA)$$
 et $div\overrightarrow{B} = 0 \ (MF)$

On retrouve, ainsi, la forme des équations de maxwell (MA et MF) en régime magnétostatique; par conséquent les résultats utilisés en 1.1. restent valables dans le cadre de l'ARQP.

1.2.6.1. Théorème de superposition pour le champ magnétique \overrightarrow{B}

Le champ résultant $\overrightarrow{B} = \overrightarrow{B}_1 + \overrightarrow{B}_2$ avec \overrightarrow{B}_i : champ crée, en O par le solénoïde S_i D'après ce qui précède :

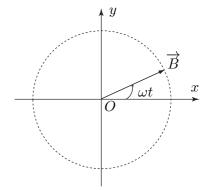
$$\overrightarrow{B} = \mu_o n i_1(t) \overrightarrow{u}_x + \mu_o n i_2(t) \overrightarrow{u}_y = \mu_o n \frac{U}{R} (\cos(\omega t) \overrightarrow{u}_x + \cos(\omega t - \phi_1 + \phi_2) \overrightarrow{u}_y)$$

$$\phi_1 - \phi_2 = \frac{\pi}{2} \quad \text{Soit} : \quad \overrightarrow{B} = \mu_o n \frac{U}{R} [\cos(\omega t) \overrightarrow{u}_x + \sin(\omega t) \overrightarrow{u}_y]$$

1.2.6.2.

Il s'agit du champ magnétique de module constant B tournant, à la vitesse angulaire $\,\omega$, dans le plan (xOy) et dans le sens trigonométrique.

$$B = \mu_o n \frac{U}{R}$$



1.2.6.3. Applications numériques :

$$I_1 = I_2 = 7mA$$
 ; $C = 400nF$; $L = 0,32mH$ et $B = 1,25.10^{-5}T$

- **1.2.7**. Le rôle du condensateur est d'introduire le déphasage entres les courants d'intensités $i_1(t)$ et $i_2(t)$.
- 1.2.8. Pour inverser le sens de rotation du champ magnétique \overrightarrow{B} total, on doit brancher le condensateur en série avec le solénoïde S_2 , l'expression de \overrightarrow{B} et telle que :

$$\overrightarrow{B} = \mu_o n \frac{U}{R} \left(\cos(\omega t - \frac{\pi}{2}) \overrightarrow{u}_x + \cos(\omega t) \overrightarrow{u}_y \right) = \mu_o n \frac{U}{R} \left(\sin(\omega t) \overrightarrow{u}_x + \cos(\omega t) \overrightarrow{u}_y \right)$$

Deuxième partie Théorie élémentaire de la RMN

- **2.1.** $\overrightarrow{B_o} = B_o \overrightarrow{u}_z (B_o > 0)$
 - 2.1.1. Théorème du moment cinétique appliqué dans le référentiel $\mathcal R$

$$\left(\frac{d\vec{\sigma}}{dt}\right)_{\rm R} \ = \ \overrightarrow{M} \qquad \Rightarrow \qquad \frac{1}{\gamma}\frac{d\vec{m}}{dt} \ = \ \vec{m}\wedge\overrightarrow{B}_o \quad {\rm ou} \quad \boxed{\frac{d\vec{m}}{dt} \ = \ \gamma\vec{m}\wedge\overrightarrow{B}_o}$$

2.1.2. D'après l'équation précédente :

2.1.3. Soit α , l'angle entre \vec{m} et \overrightarrow{B}_o :

$$\vec{m}.\overrightarrow{B}_o = m_z B_o = \|\vec{m}\| B_o \cos \alpha \implies \cos \alpha = \frac{m_z}{\|\vec{m}\|} \implies \alpha \text{ est constant}$$

2.1.4. Par projection, dans la base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$, de l'équation établie en 2.1.1., on a :

$$\begin{pmatrix} \frac{dm_x}{dt} \\ \frac{dm_y}{dt} \\ \frac{dm_z}{dt} \end{pmatrix} = \gamma \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 0 \\ B_o \end{pmatrix} = \gamma B_o \begin{pmatrix} m_y \\ -m_x \\ 0 \end{pmatrix}$$

Soit le système d'é quations différentielles :

$$\begin{cases} \frac{dt}{dt} - \gamma B_o m_y = 0\\ \frac{dm_y}{dt} + \gamma B_o m_y = 0\\ \frac{dm_z}{dt} = 0 \end{cases}$$

On pose :
$$\underline{m} = m_x + jm_y$$
 \Rightarrow $\boxed{\frac{d\underline{m}}{dt} + j\gamma B_o \underline{m} = 0}$

On pose :
$$\underline{m} = m_x + jm_y$$
 \Rightarrow $\frac{d\underline{m}}{dt} + j\gamma B_o \underline{m} = 0$

$$\underline{Solution} : \underline{m} = m_o \exp j\gamma B_o \qquad \text{d'où} : \begin{cases} m_x(t) = m_o \cos{(\gamma B_o t)} \\ \text{et} \end{cases}$$

$$\underline{m_y(t) = -m_o \sin{(\gamma B_o t)}}$$

2.1.5. Précession de Larmor

$$\vec{m} = m_o \left(\cos \left(\gamma B_o t\right) \vec{u}_x + \sin \left(\gamma B_o t\right) \vec{u}_y\right) + m_z \vec{u}_z$$

D'où mouvement de précission autour de Oz (ou dans le plan) (xOy) à la pulsation:

$$\left| \overrightarrow{\omega}_{o} = -\gamma B_{o} \overrightarrow{u}_{z} = -\gamma \overrightarrow{B}_{o} \right|$$
 tel que : $\left| \overrightarrow{\omega}_{o} \right| = \gamma B_{o}$

2.1.6. Application numérique

$$\omega_o = -2.7 \times 10^8 \ s^{-1}$$
 et $f_o = \frac{|\omega_o|}{2\pi} = 0.43.10^8 \ Hz$

Cette fréquence f_o se situe dans le domaine Hertzien.

$${f 2.2.} \quad \overrightarrow{B}_{tot} = \overrightarrow{B}_o \vec{u}_z + \overrightarrow{B}_1 \vec{u}_X \quad {
m tel \ que}: \ \ 0 < B_1 << B_o$$

2.2.1. En appliquant le résultat de la question 2.1.1.

$$\left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}} = \gamma \vec{m} \wedge (B_o \vec{u}_z + B_1 \vec{u}_X) = -\vec{m} \wedge (\omega_o \vec{u}_z + \omega_1 \vec{u}_X) = -\vec{m} \wedge (\vec{\omega}_o + \vec{\omega}_1)$$
Soit
$$\left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}} = -\vec{m} \wedge (\vec{\omega}_o + \vec{\omega}_1)$$

2.2.2. \mathcal{R}_1 est en rotation par rapport à \mathcal{R} . En appliquant le résultat de la dérivée d'un vecteur par rapport au temps dans un changement de référentiels :

$$\left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}} = \left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}_1} + \overrightarrow{\Omega}_{\mathcal{R}/\mathcal{R}_1} \wedge \vec{m} = -\vec{m} \wedge (\vec{\omega}_o + \vec{\omega}_1) \Rightarrow \left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}_1} = \vec{m} \wedge (\vec{\omega} - \vec{\omega}_o - \vec{\omega}_1)$$
Soit
$$\left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}_1} = \vec{m} \wedge \left(\overrightarrow{\Omega} - \vec{\omega}_1\right)$$

2.2.3. Le moment magnétique \vec{m} effectue, dans \mathcal{R}_1 , un mouvement de précession autour de \vec{u} à la pulsation $\overrightarrow{\Omega}_1 = \overrightarrow{\omega}_1 - \overrightarrow{\Omega}$ (vecteur rotation instantané autour de \vec{u}) tel que : \vec{u} est colinéaire à $\overline{\Omega}_1$.

Projection suivant Oz:

$$\begin{cases} \overrightarrow{\Omega}_{1}.\overrightarrow{u}_{z} = \left\| \overrightarrow{\Omega}_{1} \right\| \cos \theta \\ \overrightarrow{\Omega}_{1}.\overrightarrow{u}_{z} = (\overrightarrow{\omega}_{1} - \overrightarrow{\omega} + \overrightarrow{\omega}_{o}).\overrightarrow{u}_{z} = \omega_{o} - \omega \\ \left\| \overrightarrow{\Omega}_{1} \right\| = \sqrt{\omega_{1}^{2} + (\omega - \omega_{o})^{2}} = \sqrt{\gamma^{2}B_{1}^{2} + (\omega - \omega_{o})^{2}} \end{cases} \Rightarrow \boxed{\cos \theta = \frac{\omega_{o} - \omega}{\sqrt{\gamma^{2}B_{1}^{2} + (\omega - \omega_{o})^{2}}}}$$

2.2.4. Le mouvement de $\overrightarrow{\Omega}_1 = \overrightarrow{\omega}_1 - \overrightarrow{\Omega}$ relativement à \mathcal{R} , est celui du repère \mathcal{R}_1 par rapport à \mathcal{R} (car $\overrightarrow{\Omega}_1$ est un vecteur de \mathcal{R}_1): $\overrightarrow{\Omega}_1$ est, donc, animé par rapport à \mathcal{R} d'un mouvement de rotation uniforme autour de l'axe Oz, à la vitesse angulaire $\vec{\omega} = \omega \vec{u}_z$.

Le mouvement du moment magnétique \vec{m} dans \mathcal{R} est, donc, une précession et une rotation.

- **2.2.5**. On pose : $\vec{m}_z = m_z \vec{u}_z$
 - **2.2.5.1**. $\overrightarrow{\Omega} = \overrightarrow{0}$. D'après 2.2.2.

$$\left(\frac{d\vec{m}}{dt}\right)_{\mathcal{R}_1} = -\vec{m} \wedge \vec{\omega}_1 = \vec{\omega}_1 \wedge \vec{m}$$

La composante \vec{m}_z subit un premier retournement au bout d'un temps Δt telle que :

$$\Delta t = \frac{T_1}{2} = \frac{\pi}{|\omega_1|} = \frac{\pi}{\gamma B_1}$$

2.2.5.2. Application numérique :

$$\Delta t = 11,6 \ ms$$

- 2.3. Prise en compte de la relaxation
 - 2.3.1. Relaxation d'un moment magnétique

$$\left(\frac{d\overrightarrow{M}}{dt}\right)_{\text{relaxation}} = -\frac{\overrightarrow{M} - \overrightarrow{M}_o}{\tau}$$

- **2.3.1.1**. τ est homogène à un temps. Son unité dans le (SI) est la seconde.
- 2.3.1.2. Résolution de l'équation différentielle

$$\text{De l'équation}: \left(\frac{d\overrightarrow{M}}{dt}\right)_{\text{relaxation}} + \frac{\overrightarrow{M}}{\tau} = \frac{\overrightarrow{M}_o}{\tau} \text{ , on en déduit que}: \ \overrightarrow{M}(t) = \overrightarrow{M}_o + \overrightarrow{C} \exp{-\frac{t}{\tau}}$$

Compte tenu des considération expérimentale citée : $\begin{cases} \overrightarrow{M}(t_o) &= 0 \\ \overrightarrow{C} &= -\overrightarrow{M}_o \text{exp} \frac{t_o}{\tau} \end{cases}$

Soit :
$$\overrightarrow{M}(t) = \overrightarrow{M}_o \left(1 - \exp{-\frac{t - t_o}{\tau}} \right)$$
 ; d'où le ré sultat!

- 2.3.2. Équations de Bloch
 - 2.3.2.1. En utilisant les questions 2.2.2 et 2.3.1, ainsi que l'hypothèse admise en 2.3 :

$$\left(\frac{d\overrightarrow{M}}{dt} \right)_{\mathsf{R}_1} \ = \ \overrightarrow{M} \wedge \left(\overrightarrow{\Omega} \ - \ \overrightarrow{\omega}_1 \right) + \ \left(\frac{d\overrightarrow{M}}{dt} \right)_{\mathsf{relaxation}} = \ \overrightarrow{M} \wedge \left(\overrightarrow{\Omega} \ - \ \overrightarrow{\omega}_1 \right) \ - \ \frac{\overrightarrow{M}}{\tau} + \frac{\overrightarrow{M}_o}{\tau}$$

$$\underline{\text{Soit l'équation}}: \quad \boxed{\left(\frac{d\overrightarrow{M}}{dt}\right)_{R_1} \ + \ \frac{\overrightarrow{M}}{\tau} \ - \ \overrightarrow{M} \wedge \left(\Omega \vec{u}_z \ - \ \omega_1 \vec{u}_X\right) \ = \ \frac{M_o}{\tau} \vec{u}_z}$$

2.3.2.2. Équations de Bloch

$$\overrightarrow{M}_{(\vec{u}_X,\vec{u}_Y,\vec{u}_z)}\begin{pmatrix} M_X \\ M_Y \\ M_z \end{pmatrix} \Rightarrow \overrightarrow{M} \wedge (\Omega \vec{u}_z - \omega_1 \vec{u}_X) = \begin{pmatrix} \Omega M_Y \\ -\omega_1 M_z - \Omega M_X \\ M_Y \omega_1 \end{pmatrix}$$

$$\Rightarrow \begin{cases} \frac{dM_X}{dt} = \Omega M_Y - \frac{M_X}{\tau} = M_o \left(\Omega v - \frac{u}{\tau}\right) \\ \frac{dM_Y}{dt} = -\omega_1 M_z - \Omega M_X - \frac{M_Y}{\tau} = -\omega_1 M_z - M_o \left(\Omega u + \frac{v}{\tau}\right) \\ \frac{dM_Z}{dt} = M_Y \omega_1 - \frac{M_Z}{\tau} + \frac{M_o}{\tau} = -\frac{M_Z}{\tau} + M_o \left(\omega_1 v + \frac{1}{\tau}\right) \end{cases}$$

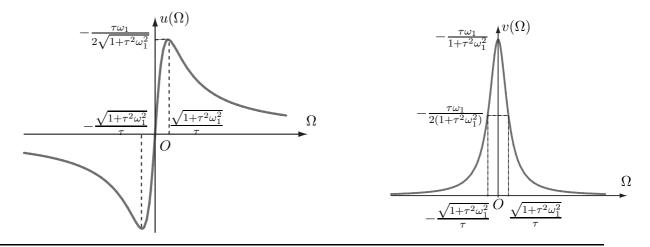
2.3.3. Régime permanent dans le référentiel R₁

2.3.3.1.

- \diamond (4) dans (3) donne: $(M_z M_o) \left(M_o + \Omega^2 \tau^2 + \omega_1^2 \tau^2 \right) = -M_o \tau^2 \omega_1^2$

Soient:
$$\begin{cases} u = -\frac{\tau^2 \omega_1 \Omega}{1 + (\tau \omega_1)^2 + (\tau \Omega)^2} \\ v = -\frac{\tau \omega_1}{1 + (\tau \omega_1)^2 + (\tau \Omega)^2} \\ M_z = M_o - M_o \frac{(\tau \omega_1)^2}{1 + (\tau \omega_1)^2 + (\tau \Omega)^2} \end{cases}$$
(7)

2.3.3.2. Allures des courbes $u(\Omega)$ et $v(\Omega)$



2.3.3.3. Largeur à mi-hauteur $\Delta\Omega$ de la courbe $v(\Omega)$:

$$v(\Omega) = \frac{v_{max}}{2} \iff -\frac{\tau\omega_1}{1 + (\tau\omega_1)^2 + (\tau\Omega)^2} = -\frac{\tau\omega_1}{2\left(1 + (\tau\omega_1)^2\right)} \implies \Omega_{12} = \pm\sqrt{\omega_1^2 + \frac{1}{\tau^2}}$$
$$\operatorname{soit}: \boxed{\Delta\Omega = 2\sqrt{\omega_1^2 + \frac{1}{\tau^2}}}$$

- **2.3.4**. Dans la pratique , le champ \overrightarrow{B}_1 est remplacé par $\overrightarrow{B}_2 = 2B_1\cos(\omega't)\overrightarrow{u}_x \ (\omega'>0)$.
 - **2.3.4.1**. Décomposition du champ \overrightarrow{B}_2

$$\overrightarrow{B}_{2} = B_{1}\cos(\omega't)\overrightarrow{u}_{x} + B_{1}\cos(\omega't)\overrightarrow{u}_{x} = B_{1}\cos(\omega't)\overrightarrow{u}_{x} + B_{1}\cos(\omega't)\overrightarrow{u}_{x} + B_{1}\sin(\omega't)\overrightarrow{u}_{y} - B_{1}\sin(\omega't)\overrightarrow{u}_{y}$$

On pose:

$$\overrightarrow{B}_{2}^{+} = B_{1} \left(\cos(\omega' t) \overrightarrow{u}_{x} + \sin(\omega' t) \overrightarrow{u}_{y} \right) \text{ et } \overrightarrow{B}_{2}^{-} = B_{1} \left(\cos(\omega' t) \overrightarrow{u}_{x} - \sin(\omega' t) \overrightarrow{u}_{y} \right)$$

Soit:
$$\overrightarrow{B} = \overrightarrow{B}_2^+ + \overrightarrow{B}_2^-$$

2.3.4.2. On pose : $\overrightarrow{\Omega} = \overrightarrow{\omega}' - \overrightarrow{\omega}_o$

A la résonance :
$$\overrightarrow{\Omega} = \overrightarrow{0}$$
 \Rightarrow $\overrightarrow{\omega}' = \overrightarrow{\omega}_o = -\gamma B_o \vec{u}_z = \omega' \vec{u}_z$ $(\omega' < 0)$

C'est, donc, la composante \overrightarrow{B}_2^- qui permet d'atteidre cette résonance $\Longrightarrow \overrightarrow{B}_2(t) = \overrightarrow{B}_2^-$ Le vecteur rotation instantané de cette composante est $\overrightarrow{\omega}_-' = -\omega' \overrightarrow{u}_z$

2.3.4.3. !!!!!!

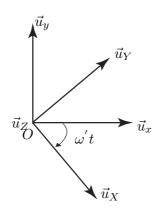
2.4. Détection de la réponse du milieu

- **2.4.1**. La bobine étant d'axe Oy, les champs \overrightarrow{B}_o et \overrightarrow{B}_1 sont, respectivement, suivants Oz et Ox; donc les $\underline{\text{flux}}$ de ces champs à travers la bobine détectrice sont $\underline{\text{nuls}}$: la présences de ces champs ne perturbent, donc, pas la détection.
 - **2.4.2**. Force électromotrice e(t) induite dans la bobine détectrice

$$\overrightarrow{B} = K\overrightarrow{M} \quad \Rightarrow \quad \Phi = N\overrightarrow{B} \cdot S\overrightarrow{u}_y = NSK\overrightarrow{M} \cdot \overrightarrow{u}_y = NSKM_y$$

soit:
$$e(t) = -\frac{d\Phi}{dt} = -NSK\frac{dM_y}{dt}$$

 $\operatorname{avec}:\ M_y = \overrightarrow{M} \cdot \overrightarrow{u}_y = M_o\left(u(\overrightarrow{u}_X \cdot \overrightarrow{u}_y) + v(\overrightarrow{u}_Y \cdot \overrightarrow{u}_y)\right) = M_o\left(-u\,\sin(\omega't) + v\,\cos(\omega't)\right)$



$$\begin{aligned} & \text{soit}: & e(t) = NSK\omega'M_o\left(u\,\cos(\omega't) + v\,\sin(\omega't)\right) \\ & \text{ou}: & e(t) = V_0\cos(\omega't) + V_{\frac{\pi}{2}}\cos(\omega't) & \text{tels que}: \begin{cases} & V_0 = NKSM_o\omega'u \\ & V_{\frac{\pi}{2}} = NKSM_o\omega'v \end{cases} \end{aligned}$$

2.4.3. On pourra représenter la fonction $\eta(\omega')$, définie par :

$$\eta = \frac{V_0}{V_{\frac{\pi}{2}}} = \frac{u}{v} = \Omega \tau = \left(-\omega' + \gamma B_o\right) \tau$$

 $\eta(\omega^{'})$ est une droite de pente $-\tau$, d'où la détermination de cette dernière..

Troisième partie Détection synchrone du signal

3.1. Schéma de principe d'un détecteur synchrone

- **3.1.1**. La constante K_0 est homogène à une tension.
- **3.1.2**. Expression de $v_{MUL}(t)$

$$v_{MUL}(t) = \frac{1}{K_0} x_1(t) x_2(t)$$

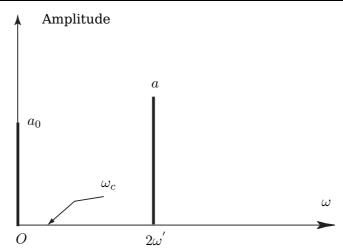
$$= \frac{1}{K_0} v_{DEP}(t) e(t)$$

$$= \frac{V}{K_0} \cos(\omega' t + \Delta \varphi) \left(V_0 \cos \omega' t + V_{\pi} \sin \omega' t \right)$$

$$v_{MUL}(t) = \frac{V}{K_0} \cos(\omega' t + \Delta \varphi) \left(V_0 \cos \omega' t + V_{\frac{\pi}{2}} \sin \omega' t \right)$$

3.1.3.

$$v_{MUL}(t) = \frac{V}{2K_0} \left(\underbrace{V_0 \cos \Delta \varphi - V_{\frac{\pi}{2}} \sin \Delta \varphi}_{\text{Composantes continues}} + \underbrace{V_0 \cos \left(2\omega' t + \Delta \varphi\right) + V_{\frac{\pi}{2}} \sin \left(2\omega' t + \Delta \varphi\right)}_{\text{Composantes variables}} \right)$$



3.1.4. La fréquence de coupure ω_c du filtre est très inférieur à ω' : les composantes variables de fréquences $2\omega'$ sont, donc, atténuées et le filtre (d'amplification A) ne laisse passer que les composantes continues. Soit :

$$v_{FPB}(t) = \frac{V}{2K_0} A \left(V_0 \cos \Delta \varphi - V_{\frac{\pi}{2}} \sin \Delta \varphi \right)$$

3.1.5. D'après l'expression précédente, on peut remarquer facilement que :

$$v_{FPB}(t) = \left(rac{VA}{2K_0}
ight)V_0 \quad ext{pour } \boxed{\Delta\phi = 0}$$
 et $v_{FPB}(t) = -\left(rac{VA}{2K_0}
ight)V_{rac{\pi}{2}} \quad ext{pour } \boxed{\Delta\phi = rac{\pi}{2}}$

Ce qui nous permet d'étudier séparément les termes : V_0 et $V_{\frac{\pi}{2}}$

3.2. Étude du circuit déphaseur

3.2.1. Fonction de transfert

Le théorème de Millmann (Loi des noeuds aux termes du potentiel) donne :

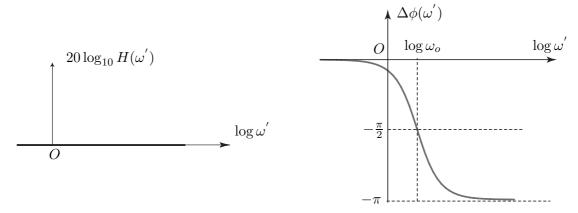
$$\frac{2}{r}\underline{v}^{-} = \frac{\underline{v}_{REF}}{r} + \frac{\underline{v}_{DEP}}{r} \quad \text{et} \quad \underline{v}^{+} \left(\frac{1}{R} + \frac{1}{\underline{Z}_{C}}\right) = \frac{\underline{v}_{REF}}{R}$$

$$\text{Soit}: \quad \underline{\underline{H}(j\omega')} = \frac{\underline{v}_{DEP}}{\underline{v}_{REF}} = \frac{1 - jRC\omega'}{1 + jRC\omega'}$$

3.2.2. Amplification $H(\omega')$ et déphasage $\Delta \phi$

$$H(\omega^{'}) = |\underline{H}(j\omega^{'})| = 1 \qquad \qquad \text{et} \qquad \qquad \Delta\phi = \arg\underline{H}(j\omega^{'}) = -2\arctan(RC\omega^{'})$$

3.2.3. Diagramme de Bode



3.2.4. $v_{FPB}(t) = V_M \cos \omega' t$ et la fréquence $f' = 10 \, kHz$

Le déphasage
$$\,\Delta\phi=-\frac{\pi}{2}\,$$
 pour $\,RC\omega^{'}=1\,$ avec $\,\omega^{'}=2\pi f'\,$ Soit :
$$\boxed{R=\frac{1}{2\pi f'C}=1,6\,\,k\Omega}$$

3.2.5. pour prélever la tension $v_{REF}(t)$ en phase avec le champ \overrightarrow{B}_2 , il suffit d'avoir le déphasage $\Delta \phi$ <u>nul</u>. Ce qui est réalisable pratiquement en prenant une résistance R <u>nulle</u> : ce qui revient à remplacer le circuit *déphaseur* par un *suiveur*!